
Instant Self-Intersection Repair for 3D Meshes
WONJONG JANG, POSTECH, South Korea
YUCHEOL JUNG, POSTECH, South Korea
GYEONGMIN LEE, POSTECH, South Korea
SEUNGYONG LEE, POSTECH, South Korea

Input Repulsive Surfaces
• Total 174.2 seconds
• 60 iterations
• 2904 ms / iter

Wrap
• Total 39.7 seconds
• 200 iterations
• 198.5 ms / iter

Ours
• Total 0.627 second
• 60 iterations
• 10.45 ms / iter

Fig. 1. Our instant self-intersection repair method resolves complex self-intersections in static 3D surface meshes that existing approaches [Wrap 2024;
Yu et al. 2021a] fail to handle. Our novel algorithm achieves both robust intersection repair and remarkable computational efficiency, enabling practical
applications in various 3D modeling scenarios.

Self-intersection repair in static 3D surface meshes presents unique chal-

lenges due to the absence of temporal motion and penetration depth informa-

tion—two critical elements typically leveraged in physics-based approaches.

We introduce a novel framework that transforms local contact handling

into a global repair strategy through a combination of local signed tangent-

point energies and their gradient diffusion. At the heart of our method

is a key insight: rather than computing expensive global repulsive poten-

tials, we can effectively approximate long-range interactions by diffusing

energy gradients from local contacts throughout the mesh surface. In turn,

resolving complex self-intersections reduces to simply propagating local

repulsive energies through standard diffusion mechanics and iteratively solv-

ing tractable local optimizations. We further accelerate convergence through

our momentum-based optimizer, which adaptively regulates momentum

based on gradient statistics to prevent overshooting while maintaining rapid

intersection repair. The resulting algorithm handles a variety of challeng-

ing scenarios, from shallow contacts to deep penetrations, while providing

computational efficiency suitable for interactive applications.

CCS Concepts: •Computingmethodologies→ Shapemodeling; •Math-
ematics of computing→ Continuous optimization.

Authors’ Contact Information: Wonjong Jang, POSTECH, South Korea, wonjong@

postech.ac.kr; Yucheol Jung, POSTECH, South Korea, ycjung@postech.ac.kr; Gyeong-

min Lee, POSTECH, South Korea, kyung45250@postech.ac.kr; Seungyong Lee,

POSTECH, South Korea, leesy@postech.ac.kr.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/8-ART

https://doi.org/10.1145/3731427

Additional Key Words and Phrases: Self-intersection, shape optimization,

static 3D surface meshes

ACM Reference Format:
Wonjong Jang, Yucheol Jung, Gyeongmin Lee, and Seungyong Lee. 2025.

Instant Self-Intersection Repair for 3D Meshes. ACM Trans. Graph. 44, 4
(August 2025), 14 pages. https://doi.org/10.1145/3731427

1 Introduction
Self-intersections in geometric modeling arise when different parts

of a surface pass through each other, creating physically invalid

configurations that need to be repaired. These geometric anomalies

occur in various scenarios—from dynamic cases where surfaces

intersect during motion, to static cases where intersections exist in

a single mesh configuration. Especially, static cases commonly arise

in applications like deformation or rigging transfer, where source

mesh poses are mapped to differently shaped target characters.

Our goal is to repair self-intersections of static surface meshes by

computing minimal geometric deformation that eliminates invalid

surface configurations while faithfully preserving the original shape

characteristics.

While self-intersection detection and resolution have been well

studied in physics simulations, these solutions take full advantage

of temporal information and penetration depth estimation, both of

which are unavailable in static surface mesh scenarios. Continu-

ous collision detection approaches [Ferguson et al. 2021; Lan et al.

2022a,b; Li et al. 2020, 2022] assume continuous object motion be-

tween previous collision-free frame and current frame, allowing

them to detect and resolve collisions by comparing previous and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3731427
https://doi.org/10.1145/3731427

2 • Jang et al.

current states. Discrete collision detection approaches [Ding and

Schroeder 2019; Macklin et al. 2016; Müller et al. 2007] assume vol-

umetric or tetrahedral meshes where penetration depths can be

effectively estimated [Chen et al. 2023; Je et al. 2012].

However, static 3D surface meshes present several fundamental

challenges: there is no temporal information about how and when

intersections occurred; the absence of a clear interior volume makes

it ambiguous to determine inside/outside regions; and in complex

penetrations, finding closest surface points and deciding resolution

directions becomes highly challenging. The last issue is particularly

problematic since resolving local triangle collisions does not nec-

essarily lead to a complete global self-intersection resolution—the

algorithm must infer an appropriate global deformation direction

with only local geometric information available.

In this paper, we present a

novel method for instant self-

intersection repair in static 3D

surface meshes that combines ef-

ficient local energy computation

with gradient diffusion. Our ap-

proach is built on the proven ef-

fectiveness of tangent-point en-

ergy [Sassen et al. 2024; Yu et al. 2021a,b] for self-intersection preven-

tion, but introduces a critical improvement: rather than computing

computationally expensive global potentials, we focus computa-

tional effort on local potentials at intersection regions and approxi-

mate global potentials through smooth propagation of local poten-

tials over the surface domain. As a part of this strategy, we revise the

original unsigned tangent-point energy formulation into a signed

version to better direct the repulsive forces. This local-to-global

strategy significantly reduces computational overhead and enables

self-intersection repair for static 3D surfaces without well-defined

interior volume, as demonstrated in the inset figure.

To accelerate convergence, we exploit the observation that ver-

tices tend to move coherently during self-intersection repair. Based

on this insight, we develop an adaptive momentum-based optimiza-

tion scheme that employs repulsive coherence while preventing

overshooting artifacts. Our novel optimizer incorporates momen-

tum to achieve rapid convergence, but automatically moderates its

effect when self-intersections have been repaired, ensuring rapid

and stable repair even in cases of deep penetrations.

The integration of these components—local signed tangent-point
energy, gradient diffusion, and adaptive momentum optimization—
enables our method to handle a wide range of self-intersecting

surface meshes from shallow surface contacts to complex deep

penetrations. The robustness and speed of our method make it

particularly valuable for interactive applications like deformation

transfer, character animation, and real-time mesh editing, where

self-intersections can frequently occur.

The main contributions of our work include:

• A novel local signed tangent-point energy formulation, com-

bined with a gradient diffusion scheme for efficient intersection

repair.

• An adaptive momentum-based optimization method that accel-

erates convergence while preventing overshooting artifacts.

• An extensive benchmark dataset of surface meshes with chal-

lenging self-intersections, allowing rigorous evaluation of self-

intersection repair methods.

• A comprehensive validation across various scenarios, including

user-controlled repair and applications in deformation transfer,

inter-object intersection repair, and key pose correction.

2 Related Work

2.1 Self-Intersection Handling
Physics Simulation. Self-intersection resolution in physics sim-

ulation employs either Continuous Collision Detection (CCD) or

Discrete Collision Detection (DCD). CCD methods, such as the

incremental potential contact approach [Li et al. 2020] and its exten-

sions [Fang et al. 2021; Ferguson et al. 2021; Lan et al. 2022a,b; Li et al.

2022], detect the first moment of contact between elements starting

from a known intersection-free state. More relevant to our work

are DCD methods, which detect and resolve collisions after they

occur. DCD methods typically resolve intersections through various

computational strategies, including minimizing penetration volume

[Allard et al. 2010; Wang et al. 2012], applying constraints [Bouaziz

et al. 2023; Macklin et al. 2016; Müller et al. 2007; Verschoor and

Jalba 2019], and using penalty forces [Belytschko and Neal 1991;

Ding and Schroeder 2019; Drumwright 2007; Huněk 1993]. However,

these methods are primarily designed for volumetric or tetrahedral

meshes and depend on robust approximations of penetration depths.

For self-intersection repair on static surface meshes, an intuitive

approach would be to first perform volumetric discretization and

then apply a DCD approach to the resulting representation. How-

ever, conventional tetrahedralizationmethods such as TetGen [Hang

2015] assume self-intersection-free input surface meshes. More re-

cent approaches like TetWild [Hu et al. 2018] and fTetWild [Hu

et al. 2020] allow inputs with self-intersections, but glue disparate

self-intersecting parts through their 𝜖-envelopes. Although Sacht et

al. [2013] and Overby et al. [2021] utilize conformal mean curvature

flow (cMCF) to eliminate self-intersections before tetrahedralization,

cMCF generally does not guarantee convergence to self-intersection-

free surfaces. Li and Barbič [2018] proposed an alternative method

using cell complexes and immersion graphs to decompose meshes

into self-intersection-free components before tetrahedralization.

These approaches incur not only considerable computational over-

head due to slow tetrahedralization processes but also the additional

burden of physics simulations to resolve self-intersections.

Tangent-Point Energy. Repulsive Curves [Yu et al. 2021b] lever-

age tangent-point energies [Buck and Orloff 1995; Strzelecki and

von der Mosel 2013, 2018] to handle space curves by providing

infinite barriers to self-intersection through global pairwise point

interactions. Repulsive Surfaces [Yu et al. 2021a] adapt these po-

tentials to surface geometries through discretization schemes and

hierarchical solvers, enabling robust self-intersection avoidance in

surface meshes. Repulsive Shells [Sassen et al. 2024] introduce shape

spaces with collision-aware metrics based on tangent-point energy,

ensuring that continuous shape interpolation remains intersection-

free by default. In contrast to these approaches that use tangent-

point energies as global repulsive potentials, our method computes

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Instant Self-Intersection Repair for 3D Meshes • 3

local tangent-point energies specifically on intersecting triangles

and approximates global energies through surface-based gradient

diffusion for robust and efficient self-intersection repair.

2.2 Diffusion over 3D Meshes
The mesh Laplacian operator [Dziuk 1988; Pinkall and Polthier

1993] provides a mathematical foundation for modeling diffusion

processes across discrete surfaces [Meyer et al. 2003]. This opera-

tor facilitates various geometry processing tasks through energy

diffusion, with the heat method [Crane et al. 2017] being a notable

example that computes geodesic distances by simulating heat flow.

Extending the diffusion concept, recent works leverage gradient

diffusion using the mesh Laplacian matrix as a low-pass filter on

gradients for enforcing smoothness constraints on diverse geomet-

ric tasks: Nicolet et al. [2021] achieve smooth inverse rendering

solutions with fewer gradient descent steps, Jung et al. [2023] regu-

larize non-rigid mesh registration, and Wang et al. [2024] constrain

rigidness in multi-view facial reconstruction. Similarly, our method

utilizes gradient diffusion to smoothly propagate sparse gradients

across the mesh surface.

2.3 Optimization with Momentum
Momentum-based optimizations [Nesterov 1983; Polyak 1964] ac-

celerate convergence by accumulating past gradients, and modern

optimizers like Adam [Kingma and Ba 2015] further extend this

approach by incorporating adaptive per-parameter learning rates.

However, while these methods improve convergence rates, they can

produce overshooting artifacts [Ogata 1995] that yield undesirable

shapes in geometric optimization. To address this limitation, we

propose an adaptive optimization method that accelerates conver-

gence via aggressive updates during self-intersection repair and

prevents overshooting by eliminating momentum after resolving

self-intersections.

3 Overview
Our framework repairs self-intersections through iterations of four

main steps:

i. Identify intersecting triangle pairs with CUDA-optimized self-

intersection detection algorithm [Choutas 2019; Karras 2012].

ii. Compute local signed tangent-point energies for each detected

intersection pair (Section 4).

iii. Propagate the derivatives of local repulsive energies across the

mesh surface (Section 5.1).

iv. Accelerate optimization through momentum while preventing

overshooting artifacts (Section 6.2).

The key innovation of our approach is an efficient local-to-global

strategy: rather than computing expensive global repulsive energies,

we concentrate computation on actual intersection regions and

leverage diffusion to smoothly propagate repulsive forces. Combined

with momentum-based optimization, this approach enables both

efficient and robust handling of complex self-intersections.

4 Local Signed Tangent-Point Energy
We introduce an efficient energy formulation for repairing self-

intersections including complex and deep penetrations on mesh sur-

faces. Building on the effective discrete tangent-point energy (TPE)

for surfaces [Yu et al. 2021a], we introduce two key improvements:

a localized formulation that operates directly on a self-intersecting

triangle pair (Section 4.1) and a signed formulation (Section 4.2) that

enhances the original unsigned approach for consistent repulsion

forces.

4.1 Local Discrete Tangent-Point Energy

𝑥𝑥
𝑛𝑛(𝑥𝑥)

𝑦𝑦

𝑟𝑟(𝑥𝑥,𝑦𝑦,𝑛𝑛 𝑥𝑥)

Given two points 𝑥 , 𝑦 and a normal

vector 𝑛(𝑥) at 𝑥 , the tangent-point

energy is defined as the reciprocal of

the radius 𝑟 (𝑥,𝑦, 𝑛(𝑥)) of the mini-

mal sphere that is tangent to 𝑥 and

intersects 𝑦. For a discrete triangle

mesh, this energy can be efficiently

computed usingmidpoint quadrature

over triangle pairs [Yu et al. 2021a]. Given a mesh with triangle set

T , the discrete tangent-point energy Φ̂ considers all triangle pairs:

Φ̂(𝑥) :=
∑︁
𝑡1∈T

∑︁
𝑡2∈T
𝑡1≠𝑡2

𝑎𝑡1𝑎𝑡2𝐾 (𝑐𝑡1 , 𝑐𝑡2 , 𝑛𝑡1), (1)

where𝑎𝑡1 ,𝑎𝑡2 are triangle areas, 𝑐𝑡1 , 𝑐𝑡2 are centroids, and𝑛𝑡1 denotes

the unit normal of triangle 𝑡1. The discrete kernel 𝐾 is defined as:

𝐾 (𝑥,𝑦, 𝑛) := |⟨𝑛, 𝑥 − 𝑦⟩|
𝛼

|𝑥 − 𝑦 |2𝛼
. (2)

The exponent 𝛼 determines the repulsion strength.

This global formulation, while adequate for minor intersections

[Yu et al. 2021a, Fig. 26], struggles with deep penetrations due to

deceptive high-energy pairs. These pairs typically occur in high-

curvature regions where locally adjacent vertices generate signif-

icant energy values despite not being actual intersections. While

these pairs contribute high energy to Eq. 1, their gradients often

counteract the resolution of true self-intersections, making the opti-

mization process inefficient.

We address this problem by introducing a local formulation that

concentrates only on intersecting triangle pairs (𝑡1, 𝑡2) ∈ C:

Φ̂(𝑥) =
∑︁

(𝑡1,𝑡2) ∈C
𝑎𝑡1𝑎𝑡2 (𝐾 (𝑐𝑡1 , 𝑐𝑡2 , 𝑛𝑡1) + 𝐾 (𝑐𝑡2 , 𝑐𝑡1 , 𝑛𝑡2)) .

This localized formulation reduces the computational complexity

from𝑂 (𝑛2) pairs, or𝑂 (𝑛 log𝑛) pairs when using a bounding volume

hierarchy, to 𝑂 (𝑘) where 𝑘 ≪ 𝑛, resulting in substantial computa-

tional gains.

Although this triangle-to-triangle approach prevents centroid

intersections, it cannot guarantee that vertices do not penetrate tri-

angles. To address this, we propose a vertex-to-triangle formulation:

Φ̂(𝑥) =
∑︁

(𝑡1,𝑡2) ∈C

(∑︁
𝑣1∈𝑡1

𝑎𝑡2𝐾 (𝑐𝑡2 , 𝑣1, 𝑛𝑡2) +
∑︁
𝑣2∈𝑡2

𝑎𝑡1𝐾 (𝑐𝑡1 , 𝑣2, 𝑛𝑡1)
)
(3)

This formulation enables vertices to receive direct repulsive forces,

rather than averaged forces computed using triangle centroids.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Jang et al.

(b) conical
distance field

(a) input (c) point-to-plane
energy

(d) tangent-point
energy

(e) signed tangent-point
energy (ours)

elapsed time
(ours)

0.635 s

result after the same number of iterations

Fig. 2. Effects of repulsive energies. (a) Input mesh with deep self-penetrations, (b-d) alternative energy formulations exhibit slow convergences, with (c)
simply moving along surface normals producing unnatural deformations, (e) our signed tangent-point energy achieves the fastest convergence.

4.2 Signed Formulation

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑐𝑐𝑡𝑡
𝑛𝑛𝑡𝑡

𝜕𝜕

−
𝜕𝜕𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕

min

Fig. 3. When a penetrating vertex
𝑣 receives repulsive energy from a
triangle centroid 𝑐𝑡 with normal
vector 𝑛𝑡 , the derivative of the un-
signed kernel 𝐾 leads vertex 𝑣 to
settle on 𝑐𝑡 ’s tangent plane, while
the derivative of the signed kernel
𝐾𝑠 guides 𝑣 to escape outward from
the surface.

The tangent-point kernel (Eq. 2)

in its original form is an unsigned
energy function that achieves its

minimum value of zero when the

vector 𝑥 − 𝑦 is tangential to the

surface. When applied globally to

all triangle pairs, this energy can-

not reach its minimum except in

the case of a planar mesh; oth-

erwise, it distributes surface cur-

vatures uniformly. In our local

formulation where only intersect-

ing triangle pairs are considered,

this unsigned energy can simply

reach its minimum by settling ver-

tices on the tangent plane, rather

than properly resolving self-intersections through repulsion (Fig. 3).

To prevent vertices from settling on the tangent plane and main-

tain repulsive forces throughout the intersection repair process, we

introduce a signed reformulation of the original energy:

𝐾𝑠 (𝑐𝑡 , 𝑣, 𝑛𝑡) =
⟨𝑛𝑡 , 𝑐𝑡 − 𝑣⟩𝛼
|𝑐𝑡 − 𝑣 |2𝛼

, (4)

where 𝛼 is chosen to be a positive odd number to preserve the sign

of the numerator.

This signed formulation ensures consistent gradient directions

regardless of whether vertices lie inside or outside the surface, with

the energy decreasing monotonically as vertices move away from

the paired triangle centroid along the surface normal direction.

As illustrated in Fig. 2, this modification produces significantly

faster convergence compared to both the unsigned formulation and

conventional energies, such as conical distance field [Tzionas et al.

2016] and point-to-plane energy [Rusinkiewicz and Levoy 2001].

𝐼𝐼 + 𝜆𝜆𝜆𝜆 −2

Fig. 4. Visualization of gradient diffusion. We apply two iterations of dif-
fusion with a large time step (𝜆 ≥ 99) to propagate the repulsive energy
gradients from local contact triangles to deeply penetrating vertices.

4.3 TPE for Avoidance vs. Repair of Self-Intersections
The tangent-point energy functional acts as a key component for

self-intersection avoidance in previous works [Sassen et al. 2024;

Yu et al. 2021a,b]. For avoiding self-intersections, it is important to

create a barrier with infinite energy by setting the exponent 𝛼 > 4.

The barrier enables maintaining intersection-free states duringmesh

optimization for an initial configuration with no self-intersections.

However, for our self-intersection repair task where the input

mesh already contains intersections, such an infinite energy barrier

can be problematic as it may trap vertices in self-intersecting regions.

Thus, for self-intersection repair, we need to set the exponent 𝛼 < 4

to create a finite energy barrier that discourages self-intersections

and simultaneously allows vertices to escape from intersecting re-

gions. Based on this observation, our experiments employ 𝛼 = 3,

which enforces strong repulsion while preserving the sign of Eq. 4.

5 Gradient Diffusion and Regularization
We introduce gradient diffusion and shape-preserving regularization

to resolve self-intersections while maintaining geometric features

of input meshes. The diffusion mechanism propagates local repul-

sive forces to broader mesh regions (Section 5.1), and differential

coordinate-based regularization preserves geometric features (Sec-

tion 5.2).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Instant Self-Intersection Repair for 3D Meshes • 5

5.1 Repulsive Gradient Diffusion
Unlike global repulsive potentials (Eq. 1) that generate dense gradi-

ent fields on the entire mesh, our local repulsive energy produces

sparse gradients localized to self-intersecting triangles. To propa-

gate these repulsive forces to vertices of non-intersecting triangles,

we perform gradient diffusion through a diffusion matrix (I+𝜆L)−1,
combining the identity matrix I and the discrete Laplacian matrix L.
We apply this diffusion matrix twice to achieve a sufficient global

distribution of local gradients, and the final diffused gradients are

obtained by:

x← x − 𝜂 (I + 𝜆L)−2 𝜕Φ̂
𝜕x
,

where 𝜂 is the step size for gradient descent and 𝜆 controls the

diffusion radius, with a larger value resulting in broader gradient

propagation. In all our experiments, we set 𝜆 = 99, except for Fig. 13

where 𝜆 = 999. Fig. 4 visualizes the effect of gradient propagation.

Although this approach shares similarities with Sobolev precon-
ditioning [Karatson and Loczi 2005; Neuberger 1985; Osher et al.

2022; Park et al. 2021], its fundamental purpose differs. Sobolev

preconditioning typically addresses an optimization problem with

global minimum by improving the condition number of the system

matrix to achieve a better convergence rate. In our case, we utilize

the diffusion matrix to propagate sparse gradients smoothly over

the mesh surface, obtaining a dense gradient approximation that

guides our dynamic optimization process as the objective function

evolves with changing self-intersections.

In terms of computational efficiency, the advantage of sparse lin-

ear system (I + 𝜆L) used for gradient diffusion is that it remains

constant throughout the optimization process. This enables us to

pre-compute a Cholesky decomposition [Naumov 2011] on the sys-

tem matrix, allowing for near-linear time solution of the sparse

system at each iteration. As demonstrated in Sections 7.2 and 7.3,

this approach to resolving self-intersections via iterative local op-

timization significantly reduces computational cost and produces

plausible shapes suitable for practical applications.

5.2 Shape Preserving Regularization
Another key objective in our self-intersection repair is to preserve

the original geometric features of the input mesh. To achieve the

objective, we employ differential coordinates [Lipman et al. 2004;

Sorkine et al. 2004], computed using the Laplace-Beltrami operator

L [Dziuk 1988; Pinkall and Polthier 1993]. These coordinates ap-

proximate the mean curvature at each vertex, characterizing local

geometric variations, and preserving them leads to maintaining the

relative geometric relationships between vertices. Our regulariza-

tion term preserving the initial differential coordinates 𝜹 is defined

as:

𝐸 (x) = ∥Lx − 𝜹 ∥2 . (5)

Minimizing this energy term ensures that vertices are repositioned

with minimal distortions from their original differential relation-

ships during intersection repair.

30

10 20 30 400

60

90

120

150

an
gl

e
(°

)

iteration

∠(gₜ, g₀)

Fig. 5. Gradient consistency analysis. We measure angles between the cur-
rent and initial gradients, g𝑡 and g

0
, for five vertices of the same repaired

body part during gradient descent. The gradients maintain consistent re-
pulsion directions throughout the repair process.

5.3 Final Self-Intersection Repair Energy
By combining Eqs. 3 and 5, our final objective function for self-

intersection repair is formulated as:

Φ
total
(x) = Φ̂(x) + 𝛽𝐸 (x), (6)

where 𝛽 controls the influence of regularization and is set to 𝛽 =

10
6
in our experiments. Finally, we diffuse the derivatives of this

objective function and update vertex positions using:

x← x − 𝜂 (I + 𝜆L)−2 𝜕Φ𝑡𝑜𝑡𝑎𝑙
𝜕x

.

In the optimization process, our repulsive energy Φ̂(x) varies per
iteration as it depends on the intersecting triangle pairs detected

at each step. During optimization, the role of Φ̂(x) is not to reach
a minimum but to provide consistent repulsion directions toward

a self-intersection-free configuration. When self-intersections are

repaired, the repulsive energy Φ̂(x) is substantially attenuated as

intersecting triangle pairs disappear, allowing the shape-preserving

regularization to become dominant. In subsequent optimization iter-

ations, this regularization attempts to restore the original shape and

may reintroduce self-intersections, resulting in oscillatory behavior.

Since the final state at termination may not represent the optimal

solution due to these oscillations, we select the configuration with

the minimum number of self-intersecting triangles observed during

the optimization process as our final solution.

6 Momentum-Based Acceleration
Although gradient descent can effectively minimize self-intersection

repair energy (Eq. 6), the optimization process often requires numer-

ous iterations, particularly for self-intersecting meshes with deep

penetrations. In this section, we present an acceleration method

based on momentum control for our optimization. Our method

builds on the popular Adam optimizer [Kingma and Ba 2015] but

introduces crucial modifications to address overshooting artifacts

of momentum-based acceleration.

6.1 Gradient Consistency
The effectiveness of momentum-based acceleration in self-inter-

section repair stems from the consistent gradient directions during

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Jang et al.

(a) input (b) gradient
descent

(c) Adam (d) UniformAdam (e) MomentumBrake
(ours)

+
50

 it
er

at
io

ns

elapsed time
(ours)

0.644 s

elapsed time
(ours)

0.923 s

Fig. 6. Comparison of optimization methods. (a) Original mesh with self-intersections. (b) Standard gradient descent shows slow convergence compared
to momentum-based optimizers. (c) Adaptive learning rate mechanism in Adam results in inconsistent and sensitive geometry updates. (d) UniformAdam
exhibits two key issues: reduced convergence speed due to momentum normalization (top) and overshooting artifacts caused by residual momentum after
intersection repair (bottom). (e) Our approach achieves rapid and stable convergence by adaptively controlling momentum during intersection repair with
automatic momentum reinitialization.

optimization, illustrated in Fig. 5. This directional consistency indi-

cates that momentum-based optimization can substantially acceler-

ate convergence while preserving solution quality.

For momentum-based optimization, we employ the Adam opti-

mizer, which utilizes both the first and secondmoments—exponential

moving averages of gradients and their squares, respectively. The

optimizer applies an adaptive step size for each variable based on

the second moment. However, as shown in Fig. 6 (c), this adaptive

normalization can disturb smooth geometry updates, as vertices

with low second moments become disproportionately sensitive to

geometry updates. Nicolet et al. [2021] address this issue with Uni-

formAdam, which uniformly normalizes the first moments using

the infinity norm of the second moments. While this uniform nor-

malization resolves sensitive and inconsistent geometry updates, it

unnecessarily reduces gradient magnitudes and impedes optimiza-

tion progress (Fig. 6 (d)). We found that accelerated convergence

can be achieved by simply removing this redundant normalization,

as demonstrated in Fig. 6 (e).

6.2 MomentumBrake
While momentum-based optimization accelerates convergence, it

can introduce overshooting artifacts [Ogata 1995]. Unlike in deep

neural network training where overshooting can help escape local

minima [Sutskever et al. 2013], such behavior in mesh optimization

can lead to unnatural shape deformation and hinder convergence

to desirable solution. We address this limitation by introducing Mo-

mentumBrake, an optimizer that adaptively regulates momentum

based on gradient statistics.

MomentumBrake computes an approximate standard deviation

𝝈 using the optimizer’s first momentsm𝑡−1 and second moments

v𝑡−1 at time 𝑡 − 1:

𝝈𝑡 =
√︃
v𝑡−1 −m2

𝑡−1 .

Using this standard deviation, MomentumBrake establishes bounds

of ±𝛼𝝈 to determine when momentum should be applied. The mo-

mentum term is preserved when the current gradient falls within

these bounds but is reset when gradients exceed them. Formally, we

update the momentum termm𝑡 at time 𝑡 using:

m𝑡 =

{
𝛽1m𝑡−1 + (1 − 𝛽1)g𝑡 if

��g𝑡 −m𝑡−1
�� ≤ 𝛼 |𝝈𝑡 |

g𝑡 otherwise

(7)

where g𝑡 is the current gradient, 𝛽1 is themomentum coefficient, and

𝛼 is the magnitude of bounds. This adaptive mechanism prevents

residual momentum from causing overshooting while retaining the

benefits of momentum-based acceleration. The complete procedure

is detailed in Algorithm 1.

To ensure stability in early optimization, we apply bias correction

to the estimates of mean 𝝁𝑡 and standard deviation 𝝈𝑡 using mov-

ing average coefficients 𝛽1 and 𝛽2. This bias correction is crucial

in early iterations to compensate for the initialization of the first

and second moments as zero. Furthermore, for the first 10 iterations,

we deliberately employ standard momentum updates, as early es-

timates of mean 𝝁𝑡 and standard deviation 𝝈𝑡 could be unreliable

due to an insufficiently developed gradient trajectory. Applying

gradient bounds during these initial stages would result in repeated

momentum resets, undermining the benefits of momentum-based

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Instant Self-Intersection Repair for 3D Meshes • 7

Algorithm 1MomentumBrake

Require: initial vertices x0, a step size 𝜂 > 0, coefficients used for

moving averages 𝛽1, 𝛽2 ∈ [0, 1), standard deviation multiplier

𝛼 > 0

1: initializem0 ← 0, v0 ← 0
2: for 𝑡 = 1 to 𝑇 do
3: g𝑡 ← −(I + 𝜆L)−2

𝜕Φ𝑡𝑜𝑡𝑎𝑙

𝜕x
4: 𝝁𝑡 ← m𝑡−1/(1 − 𝛽𝑡

1
) ⊲ Bias corrected mean

5: 𝝈𝑡 ←
√︃
v𝑡−1/(1 − 𝛽𝑡

2
) − 𝝁2𝑡 ⊲ Bias corrected std.

6: mask𝑡 ← 1[𝝁𝑡 − 𝛼𝝈𝑡 ≤ g𝑡 ≤ 𝝁𝑡 + 𝛼𝝈𝑡]
7: if 𝑡 ≤ 10 then
8: m𝑡 ← 𝛽1m𝑡−1 + (1 − 𝛽1)g𝑡
9: else
10: m𝑡 ← 𝛽1mask𝑡 ⊙m𝑡−1 + (1 − 𝛽1mask𝑡) ⊙ g𝑡 ⊲ Eq. 7

11: end if
12: v𝑡 ← 𝛽2v𝑡−1 + (1 − 𝛽2)g2𝑡
13: m̂𝑡 ← m𝑡/(1 − 𝛽𝑡

1
) ⊲ Bias correction

14: x𝑡 ← x𝑡−1 − 𝜂m̂𝑡

15: end for
16: return x𝑡

acceleration and causing the optimizer to behave similarly to stan-

dard gradient descent.

This adaptive mechanism on momentum update establishes a

bound on momentum update magnitude, inhibiting sudden mo-

mentum fluctuations. Our optimizer enforces that the momentum

change is bounded in both momentum preserving and reset cases:

|m𝑡 −m𝑡−1 | =
{
(1 − 𝛽1)

��g𝑡 −m𝑡−1
�� ≤ (1 − 𝛽1)𝛼 |𝝈𝑡 | ⊲ preserve

|m𝑡 −m𝑡−1 | > 𝛼 |𝝈𝑡 | ⊲ reset

In the momentum-preserving case, this derivation demonstrates an

implicit Lipschitz-type bound, where momentum updates are pro-

portionally constrained relative to gradient statistics 𝝈𝑡 rather than
explicit input difference

��g𝑡 − g𝑡−1��. Such a bound ensures stable

momentum updates during intersection repair as long as gradient

consistency is maintained. Conversely, when gradients deviate sig-

nificantly from recent patterns, momentum is reset, enabling the

system to quickly suppress overshooting artifacts.

7 Experiments
We conducted comprehensive experiments to evaluate our self-

intersection repair framework. First, we compare ourmethod against

recent methods with functionality to resolve self-intersections in

static 3D surface meshes. We then analyze computational efficiency

by examining the detailed performance of our framework’s compo-

nents. We also show the flexibility of our approach through user-

controlled repair and demonstrate its effectiveness for various prac-

tical applications, including deformation transfer, inter-object inter-

section repair, and key pose correction. Finally, we showcase the

results of our method on a variety of examples (Fig. 17).

7.1 Implementation Details
We perform a pre-processing step that normalizes the input mesh to

unit scale by dividing all vertex coordinates by their spatial range, as

the tangent-point energy is not scale-invariant. After repairing self-

intersections using our method, we restore the mesh to its original

scale in a post-processing step.

We implemented our method in PyTorch with CUDA acceleration.

Our implementation utilizes a CUDA-optimized self-intersection

detection algorithm [Choutas 2019; Karras 2012] and sparse ma-

trix solver [Naumov 2011; Nicolet et al. 2021] for computational

efficiency. All experiments and performance evaluations were con-

ducted on a desktop workstation equipped with an AMD Ryzen

7950X3D processor, an NVIDIA GeForce RTX 4090 GPU, and 64GB

RAM.

7.2 Comparisons
7.2.1 Benchmark. To extensively evaluate our method, we pro-

pose a benchmark dataset for the self-intersection repair task. Our

benchmark consists of 60 diverse surface meshes containing self-

intersections, categorized into three groups: full-body humanmeshes,

animal meshes, and miscellaneous meshes. For the human models,

we generated 30 challenging self-intersection scenarios by manually

rigging an SMPL model [Loper et al. 2015] using yoga poses as

references. The animal meshes comprise 20 models derived from

four artist-created animals [Radik Bilalov 2025]—deer, bear, wolf,

and hare—each with five distinct poses manually modified to induce

self-intersections. Finally, we created 10 miscellaneous objects from

scratch, including six molecular knot shapes [Schaufelberger 2020,

Fig. 1] along with pretzel, Möbius strip, Celtic knot, and discon-

nected Klein bottle shapes.

7.2.2 Baselines. We evaluate our method against two established

approaches for self-intersection repair on static surface meshes:

Repulsive Surfaces [Yu et al. 2021a] and the off-the-shelf software

Wrap [Wrap 2024]. For Repulsive Surfaces, we used the official im-

plementation to resolve self-intersections. For Wrap, we employed

its Fix Intersections tool, which resolves self-intersections using an

as-rigid-as-possible approach. This tool requires calibration of five

parameters: three weights for controlling collision, smoothness, and

initial vertex preservation, and two distance thresholds for resolu-

tion and maximum collision. Obtaining a satisfactory result requires

extensive parameter tuning tailored to each input geometry, which

is a considerably time-consuming process due to the tool’s slow

optimization performance. To ensure fair comparison, we manually

tuned all five parameters for each input.

7.2.3 Experimental Results. We evaluate our method against the

baselines on our proposed benchmark. In Table 1, we first com-

pare the number of self-intersecting triangles remaining after repair.

Since each mesh contains a different number of triangles, we also

present the normalized number of self-intersecting triangles, com-

puted as the ratio to the total triangle count. While comparative

methods still leave numerous self-intersections, our method success-

fully repairs self-intersections, except for folded geometries that are

geodesically adjacent but produce conflicting repulsion directions,

as discussed in the limitations section (Sec. 7.6). To demonstrate

our method’s effectiveness in completely eliminating geodesically

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Jang et al.

Misc.AnimalsFull-body Humans

Fig. 7. Our self-intersection benchmark dataset. It contains diverse surface meshes with self-intersections categorized into three groups: full-body humans,
animals, and miscellaneous objects including knots.

distant self-intersections, we additionally report the maximum geo-

desic distance between self-intersecting triangle pairs in the result-

ing meshes. When measuring geodesic distances, we first normalize

all meshes to unit scale. Our method shows small maximum geo-

desic distances, indicating that self-intersections between disparate

parts are successfully repaired.

In Table 2, we also compare the computational efficiency of our

method with the baselines. We measured the time required for each

method after performing optimization with a fixed number of 60

iterations. Other methods require substantially longer execution

time to resolve self-intersections, whereas our method demonstrates

superior performance, completing repairs within one second.

As illustrated in Fig. 16, we tested the limits of geometric com-

plexity that can be handled by different methods using examples

ranging from shallow penetrations (rows 1–2) to deep penetrations

and intertwined structures (rows 3–6). Other methods encounter

significant limitations in resolving deep penetrations and complex

entangled structures. In addition, Repulsive Surfaces [Yu et al. 2021a]

produces denser meshes due to dynamic remeshing, which is crucial

for minimizing its tangent-point energy. In contrast, our method

effectively handles these challenging cases without any remeshing

operations.

7.3 Analysis
7.3.1 Performance. We analyze computational performance and

GPU resource utilization of our method. Fig. 8 presents a detailed

breakdown of execution times for different components in our

pipeline and peak GPU memory usage during the repair phase.

Laplacian
matrix

Total
476MB

𝑉𝑉 = 6890, 𝐹𝐹 = 13776

181MB

185MB

110MB

diffusion matrix
& factorization

miscellaneous
computation

optimization
402ms

(6.7ms/iter)

43ms

Total
635ms

(60 iterations)

precompute
Cholesky factorization

190ms
(3.17ms/iter)

self-intersection
detection

Fig. 8. Analysis of execution time and memory consumption. Our method
demonstrates high efficiency, requiring only 635 ms for 60 iterations with a
peak GPU memory usage of 476 MB. This computational efficiency makes
our system viable for practical deployments in various use cases.

When tested on SMPL models [Loper et al. 2015] with complex self-

intersections, our method takes an average repair time of 635 ms per

model with peak GPU memory usage of 476 MB. When processing

multiple data in succession, our framework takes average 484 ms

with a warmed-up GPU.

Excluding self-intersection detection, our optimization frame-

work contains three important steps: tangent-point energy calcula-

tion, gradient diffusion, and momentum updates. The tangent-point

energy calculation is computationally inexpensive as it processes

only a few intersecting triangle pairs. The gradient diffusion is per-

formed via fast linear system solving using matrix pre-factorization.

Momentum updates involve simple arithmetic operations. These

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Instant Self-Intersection Repair for 3D Meshes • 9

Table 1. Quantitative evaluation of self-intersection repairs using our benchmark dataset. We report both the number of remaining self-intersections (NSI)
after repair and the normalized count (NC) relative to the total triangle count to avoid mesh density bias. We also measure the maximum geodesic distance
(MGD) between self-intersecting triangles, where a lower value indicates successful resolution of self-intersections between geodesically distant parts.

Repulsive Surfaces [2021a] Wrap [2024] Ours

Human Animal Misc. Human Animal Misc. Human Animal Misc.

NSI 481.57 227.6 571.3 418.43 480.65 265.9 243.27 64.75 32.2

NC 0.0223 0.0078 0.1082 0.0301 0.0230 0.0510 0.0176 0.0030 0.0042

MGD 0.6175 0.4853 3.6303 0.3720 0.9253 4.4773 0.1191 0.0450 0.0165

Table 2. Comparison with other methods on wall-clock performance. We
measured the average execution time using our benchmark dataset.

Repulsive Surfaces Wrap Ours

Execution time (sec) 82.440 43.247 0.635

efficient steps enable our optimization to achieve remarkable per-

formance at 6.7 ms per iteration.

7.3.2 Parameter Tuning. Our method incorporates two controllable

parameters: the diffusion radius 𝜆 and the regularization weight 𝛽 .

Setting the diffusion radius 𝜆 too small causes our method to become

excessively sensitive to local updates, while an overly large 𝜆 pro-

duces undesirable stiff geometry updates. Similarly, an insufficient

regularization weight 𝛽 fails to preserve the original input shape,

whereas an excessive 𝛽 inhibits necessary deformation. Achieving

desirable results requires tuning of these two parameters. As demon-

strated in Fig. 9, our method produces valid outputs within the ac-

ceptable parameter ranges: 5 × 105 ≤ 𝛽 ≤ 2 × 106 and 9 ≤ 𝜆 ≤ 140.

In contrast to Wrap [Wrap 2024], which necessitates precise tun-

ing of five parameters whenever input mesh characteristics change,

our approach demonstrates robust generalization across different

inputs once the parameters are properly set. We used fixed parame-

ters for all experiments, except in Fig. 13, where we intentionally

increased the diffusion radius 𝜆 to achieve stronger geometric stiff-

ness.

7.3.3 Robustness of Repulsive Energies. While simple self-inter-

sections with shallow penetrations can be easily resolved, robust

repulsive energies are essential for handling more complex cases

in diverse surface meshes. To evaluate the robustness of different

repulsive energies, we perform a stress test on a challenging exam-

ple featuring complex self-intersections. As demonstrated in Fig. 10,

conventional energies become stuck or diverge even with sufficient

iterations. In contrast, our proposed signed tangent-point energy

exhibits superior robustness in this challenging case. This improve-

ment is derived from two key properties: the inherent ability of

the tangent-point energy to discourage self-intersections and its

consistent repulsive forces induced by the signed formulation.

7.3.4 Convergence Rate of Optimizers. We evaluate ourMomentum-

Brake optimizer against gradient descent and UniformAdam [Nico-

let et al. 2021]. We exclude the standard Adam optimizer [Kingma

and Ba 2015] from this comparison due to its inherent limitations

in geometry updates caused by adaptive normalization (Fig. 6). To

𝜆𝜆 = 9

𝛽𝛽 = 2 × 106

𝜆𝜆 = 140

𝛽𝛽 = 5 × 105

Fig. 9. Our method supports a broad range of parameter values, consis-
tently producing valid results across the spectrum. Within the range, each
parameter introduces distinct geometric variations: the diffusion radius 𝜆
modulates geometric stiffness, and the regularization weight 𝛽 controls the
degree of shape preservation.

Table 3. Convergence rates of optimizers on our benchmark. We report
the average number of iterations required to reach a self-intersection-free
configuration.

Gradient

Descent
UniformAdam

MomentumeBrake

(Ours)

Human 115.43 82.97 47.63

Animal 64.35 53.65 34.75

Misc. 24.7 19.4 12.1

Total 83.28 62.60 37.42

quantitatively assess the effectiveness of the optimizer, we measure

the number of iterations required to repair self-intersections on

our dataset (Table 3). UniformAdam generally achieves faster con-

vergence than gradient descent, but its redundant normalization

hinders convergence by reducing the step size. Our Momentum-

Brake optimizer achieves the fastest convergence by leveraging

momentum and removing redundant normalization, while moderat-

ing overshooting artifacts through momentum reset.

7.4 Repulsion Direction Control
While surface normals of self-intersecting triangles primarily de-

termine the repulsive direction in tangent-point energy, simply fol-

lowing these geometric constraints may not always produce results

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Jang et al.

input

conical
distance field

point-to-plane
energy

tangent-point
energy

signed
tangent-point
energy

• 200 iterations
• stuck

• 200 iterations
• stuck

• 41 iterations
• settled

• 60 iterations
• diverged

Fig. 10. Robustness of repulsive energies. Given an input surface mesh with complex self-intersections, conical distance field and unsigned tangent-point
energy fail to resolve the intersections, becoming stuck in repetitive solutions. Point-to-plane energy diverges toward collapsed geometry due to continuous
backward updates on hands. Our signed tangent-point energy successfully repairs this challenging case.

input w/o control w/ control

direction
control

Fig. 11. Repulsive direction control. While our method finds a geometrically
close solution (middle), it may not always coincide with the user intention.
Our method offers direct control for the repulsion direction (right).

that match user intentions. To allow a user to guide the deforma-

tion process, we introduce an intuitive control mechanism. Given a

preferred repair direction for a user-specified surface region, the sur-

face normals of triangles that intersects with the surface region are

replaced with the user-specified repair direction in tangent-point

energy calculation. This approach effectively enables user control

in our self-intersection repair process (Fig. 11).

7.5 Applications
7.5.1 Self-Intersection-Free Deformation Transfer. Deformation trans-

fer [Sumner and Popović 2004] is a valuable tool for mesh animation

reuse by mapping animation sequences defined on a source mesh to

the target mesh with different topology. This technique can signifi-

cantly enhance artists’ productivity by allowing them to repurpose

existing animations for different character models. While this sem-

inal technique has demonstrated its practical value over decades,

it still faces a persistent limitation: the generated animations often

Motion target

result from
deformation transfer

self-intersection
repair (0.645 s)

Fig. 12. Self-intersection repair in deformation transfer. When transferring
motion via deformation transfer, self-intersection-free results are not gener-
ally guaranteed. By combining our method with deformation transfer, we
achieve immediate generation of physically valid meshes with the intended
motion.

contain self-intersections due to shape discrepancy between source

and target meshes. By combining our self-intersection repair frame-

work with deformation transfer, we can instantly obtain plausible

transfer results without self-intersections (Fig. 12).

7.5.2 Inter-Objects Intersection Repair. Ourmethod can be easily ex-

tended to handle intersections between two different objects beyond

self-intersection repair. Our process for inter-object intersection re-

pair follows the same principles as self-intersection repair, with one

key distinction: we employ separate diffusion matrices and compute

distinct gradient diffusion of local repulsive energies for each object.

This approach robustly resolves inter-object intersections while

preserving the geometric characteristics of each object (Fig. 13).

7.5.3 Key Pose Repair for Motion Sequence without Self-Intersection.
A common approach in motion animation production is to gener-

ate key poses and interpolate between them. However, when key

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Instant Self-Intersection Repair for 3D Meshes • 11

Fig. 13. Draw the sword from the stone. Our method can repair inter-object
penetrations using only local repulsive energies from intersecting triangles.

start frame
in-between frames key pose

Fig. 14. Key pose repair for self-intersection-free motion sequence. Key pose
meshes containing self-intersections may lead to implausible shapes when
used for generating in-between motion frames. Our automatic method
for repairing self-intersections can notably reduce the need for manual
correction of key poses.

poses contain self-intersections, the resulting animation sequence

would exhibit physically invalid motions. Our framework can be

integrated into the artist’s workflow by automatically repairing

self-intersecting poses (Fig. 14), eliminating the need for manual

adjustments to character poses. This automation can reduce artist

workload, ensuring physically plausible animation sequences.

7.6 Limitations
Our iterative local optimization and momentum-based updates as-

sume locally consistent gradients of repulsive energy, as mentioned

in Section 6.1. An input violating this assumption, e.g., a triangle

mesh with randomly connected vertices on a unit circle that con-

tains self-intersections, may induce inconsistent repulsion, which

remains a limitation of our method. In addition, our method assumes

the existence of a topologically self-intersection-free solution. If this

condition is not met, any existing method, including ours, will in-

evitably fail (Fig. 15).

While our method effectively repairs

self-intersections by combining local re-

pulsive energies and gradient diffusion,

it exhibits varying effectiveness depend-

ing on the geodesic proximity of self-

intersecting regions. For geodesically

distant self-intersecting parts, our gradi-

ent diffusion successfully approximates

global repulsion forces, leading to effec-

tive repair. However, when self-intersecting regions are geodesi-

cally adjacent, the diffused gradients can interfere with each other,

Fig. 15. Limitation. Like all existing approaches, our method fails on surfaces
such as the Klein bottle, which do not admit a topologically self-intersection-
free embedding.

causing attenuation of repulsive forces. This interference may re-

sult in slower convergence or incomplete resolution of local self-

intersections.

8 Conclusion
We presented a novel framework for self-intersection repair in static

3D surface meshes by reformulating global intersection handling

as an efficient local optimization problem. Our method combines

local signed tangent-point energy with gradient diffusion, and incor-

porates the MomentumBrake optimizer that statistically regulates

momentum to prevent overshooting while achieving rapid conver-

gence. Extensive evaluations demonstrate that our approach enables

fast and robust repair of complex self-intersections, providing a prac-

tical solution for geometry processing pipelines.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This

work was supported by NRF grants (RS-2023-00280400, RS-2024-

00451947) and IITP grants (RS-2022-II220290, RS-2024-00437866,

RS-2021-II212068) funded by the Korean government (MSIT).

References
Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez,

and Paul G Kry. 2010. Volume contact constraints at arbitrary resolution. In ACM
SIGGRAPH 2010 papers. 1–10.

Ted Belytschko and Mark O Neal. 1991. Contact-impact by the pinball algorithm with

penalty and Lagrangian methods. Internat. J. Numer. Methods Engrg. 31, 3 (1991),
547–572.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2023.

Projective dynamics: Fusing constraint projections for fast simulation. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2. 787–797.

Gregory Buck and Jeremey Orloff. 1995. A simple energy function for knots. Topology
and its Applications 61, 3 (1995), 205–214.

He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for Self-

Intersecting Meshes. ACM Trans. Graph. 42, 4 (2023).
Vassilis Choutas. 2019. torch-mesh-isect. https://github.com/vchoutas/torch-mesh-

isect.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2017. The heat method for

distance computation. Commun. ACM 60, 11 (2017), 90–99.

Ounan Ding and Craig Schroeder. 2019. Penalty force for coupling materials with

Coulomb friction. IEEE transactions on visualization and computer graphics 26, 7
(2019), 2443–2455.

Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.

IEEE transactions on visualization and computer graphics 14, 1 (2007), 231–240.
Gerhard Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces.

Springer.

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M Kaufman. 2021. Guaranteed

globally injective 3D deformation processing. ACM Trans. Graph. 40, 4 (2021).
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.

Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4 (2021).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/vchoutas/torch-mesh-isect
https://github.com/vchoutas/torch-mesh-isect

12 • Jang et al.

Si Hang. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Trans. Math. Softw 41, 2 (2015), 11.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast

tetrahedral meshing in the wild. ACM Trans. Graph. 39, 4 (2020), 117–1.
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60.
I Huněk. 1993. On a penalty formulation for contact-impact problems. Computers &

structures 48, 2 (1993), 193–203.
Changsoo Je, Min Tang, Youngeun Lee, Minkyoung Lee, and Young J Kim. 2012. Poly-

Depth: Real-time penetration depth computation using iterative contact-space pro-

jection. ACM Trans. Graph. 31, 1 (2012), 1–14.
Yucheol Jung, Hyomin Kim, Gyeongha Hwang, Seung-Hwan Baek, and Seungyong Lee.

2023. Mesh density adaptation for template-based shape reconstruction. In ACM
SIGGRAPH 2023 Conference Proceedings. 1–10.

J Karatson and L Loczi. 2005. Sobolev gradient preconditioning for the electrostatic

potential equation. Computers & Mathematics with Applications 50, 7 (2005), 1093–
1104.

Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and

k-d trees. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics Conference on
High-Performance Graphics. 33–37.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.). http://arxiv.org/abs/1412.6980

Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine

body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv
preprint arXiv:2201.10022 (2022).

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.

2022b. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4
(2022).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,

Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental po-

tential contact: intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (2020).

Xuan Li, Minchen Li, and Chenfanfu Jiang. 2022. Energetically consistent inelasticity

for optimization time integration. ACM Trans. Graph. 41, 4 (2022), 1–16.
Yijing Li and Jernej Barbič. 2018. Immersion of self-intersecting solids and surfaces.

ACM Trans. Graph. 37, 4 (2018), 1–14.
Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian Rossi, and

Hans-Peter Seidel. 2004. Differential coordinates for interactive mesh editing. In

Proceedings Shape Modeling Applications, 2004. IEEE, 181–190.
Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.

Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based

simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete

differential-geometry operators for triangulated 2-manifolds. In Visualization and
mathematics III. Springer, 35–57.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

based dynamics. J. Vis. 18, 2 (2007), 109–118.
Maxim Naumov. 2011. Parallel solution of sparse triangular linear systems in the

preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. NVR-2011 1 (2011).

Yurii Nesterov. 1983. A method for unconstrained convex minimization problem with

the rate of convergence𝑂 (1/𝑘2) . In Dokl. Akad. Nauk. SSSR, Vol. 269. 543.
JW Neuberger. 1985. Steepest descent and differential equations. Journal of the Mathe-

matical Society of Japan 37, 2 (1985), 187–195.

Baptiste Nicolet, Alec Jacobson, andWenzel Jakob. 2021. Large steps in inverse rendering

of geometry. ACM Trans. Graph. 40, 6 (2021), 1–13.
Katsuhiko Ogata. 1995. Discrete-time control systems. Prentice-Hall, Inc.
Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Farzin Barekat, Minh Pham, and

Alex Lin. 2022. Laplacian smoothing gradient descent. Research in the Mathematical
Sciences 9, 3 (2022), 55.

MatthewOverby, Danny Kaufman, and Rahul Narain. 2021. Globally Injective Geometry

Optimization with Non-Injective Steps. In Computer Graphics Forum, Vol. 40. Wiley

Online Library, 111–123.

Jea-Hyun Park, Abner J Salgado, and Steven M Wise. 2021. Preconditioned accelerated

gradient descent methods for locally Lipschitz smooth objectives with applications

to the solution of nonlinear PDEs. Journal of Scientific Computing 89, 1 (2021), 17.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and

their conjugates. Experimental mathematics 2, 1 (1993), 15–36.
Boris T Polyak. 1964. Some methods of speeding up the convergence of iteration

methods. Ussr computational mathematics and mathematical physics 4, 5 (1964),

1–17.

Radik Bilalov. 2025. RedDeer3D. https://radbill.artstation.com/

Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient variants of the ICP algorithm. In

Proceedings third international conference on 3-D digital imaging and modeling. IEEE,
145–152.

Leonardo Sacht, Alec Jacobson, Daniele Panozzo, Christian Schüller, and Olga Sorkine-

Hornung. 2013. Consistent volumetric discretizations inside self-intersecting sur-

faces. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 147–156.

Josua Sassen, Henrik Schumacher, Martin Rumpf, and Keenan Crane. 2024. Repulsive

Shells. ACM Trans. Graph. 43, 4 (2024).
Fredrik Schaufelberger. 2020. Open questions in functional molecular topology. Com-

munications Chemistry 3, 1 (2020), 182.

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P

Seidel. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. 175–184.

Paweł Strzelecki and Heiko von der Mosel. 2013. Tangent-Point Repulsive Potentials

for a Class of Non-smooth m-dimensional Sets in n. Part I: Smoothing and Self-

avoidance Effects. Journal of Geometric Analysis 23, 3 (2013), 1085–1139.
Paweł Strzelecki and Heiko von der Mosel. 2018. Geometric curvature energies: facts,

trends, and open problems. Universitätsbibliothek der RWTH Aachen.

Robert W Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes.

ACM Trans. Graph. 23, 3 (2004).
Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the impor-

tance of initialization and momentum in deep learning. In International conference
on machine learning. PMLR, 1139–1147.

Dimitrios Tzionas, Luca Ballan, Abhilash Srikantha, Pablo Aponte, Marc Pollefeys, and

Juergen Gall. 2016. Capturing hands in action using discriminative salient points and

physics simulation. International Journal of Computer Vision 118 (2016), 172–193.

Mickeal Verschoor and Andrei C Jalba. 2019. Efficient and accurate collision response

for elastically deformable models. ACM Trans. Graph. 38, 2 (2019), 1–20.
Bin Wang, François Faure, and Dinesh K Pai. 2012. Adaptive image-based intersection

volume. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–9.
Yating Wang, Ran Yi, Ke Fan, Jinkun Hao, Jiangbo Lu, and Lizhuang Ma. 2024. Learning

TopologyUniformed FaceMesh byVolume Rendering forMulti-view Reconstruction.

arXiv preprint arXiv:2404.05606 (2024).
Wrap. 2024. Wrap. https://faceform.com/

Chris Yu, Caleb Brakensiek, Henrik Schumacher, and Keenan Crane. 2021a. Repulsive

surfaces. ACM Trans. Graph. 40, 6 (2021).
Chris Yu, Henrik Schumacher, and Keenan Crane. 2021b. Repulsive curves. ACM Trans.

Graph. 40, 2 (2021).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

http://arxiv.org/abs/1412.6980
https://radbill.artstation.com/
https://faceform.com/

Instant Self-Intersection Repair for 3D Meshes • 13

Input RepSurf Wrap Ours

Fig. 16. Comparison of our method with Repulsive Surfaces (RepSurf) [Yu et al. 2021a] and Wrap [Wrap 2024] in handling various self-intersections. While
Repulsive Surfaces and Wrap can partially resolve shallow penetrations with slow convergences, our method successfully resolves self-intersections across all
penetration depths and achieves significantly faster computational performance.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Jang et al.

Fig. 17. Self-intersection repair on diverse 3D surface meshes with self-intersections. All cases are resolved in under one second.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Self-Intersection Handling
	2.2 Diffusion over 3D Meshes
	2.3 Optimization with Momentum

	3 Overview
	4 Local Signed Tangent-Point Energy
	4.1 Local Discrete Tangent-Point Energy
	4.2 Signed Formulation
	4.3 TPE for Avoidance vs. Repair of Self-Intersections

	5 Gradient Diffusion and Regularization
	5.1 Repulsive Gradient Diffusion
	5.2 Shape Preserving Regularization
	5.3 Final Self-Intersection Repair Energy

	6 Momentum-Based Acceleration
	6.1 Gradient Consistency
	6.2 MomentumBrake

	7 Experiments
	7.1 Implementation Details
	7.2 Comparisons
	7.3 Analysis
	7.4 Repulsion Direction Control
	7.5 Applications
	7.6 Limitations

	8 Conclusion
	Acknowledgments
	References

