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Figure 1: Results of our Toonify3D framework.We turn Toonify [Pinkney and Adler 2020] into a 3D stylized facemesh generator.
Given latent codes, our Toonify3D framework generates 3D stylized faces with a shared mesh topology.

ABSTRACT
Recent advances in generative models enable high-quality facial
image stylization. Toonify is a popular StyleGAN-based framework
that has been widely used for facial image stylization. Our goal is to
create expressive 3D faces by turning Toonify into a 3D stylized face
generator. Toonify is fine-tuned with a few gradient descent steps
from StyleGAN trained for standard faces, and its features would
carry semantic and visual information aligned with the features of
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the original StyleGAN model. Based on this observation, we design
a versatile 3D-lifting method for StyleGAN, StyleNormal, that re-
gresses a surface normal map of a StyleGAN-generated face using
StyleGAN features. Due to the feature alignment between Toonify
and StyleGAN, although StyleNormal is trained for regular faces,
it can be applied for various stylized faces without additional fine-
tuning. To learn local geometry of faces under various illuminations,
we introduce a novel regularization term, the normal consistency
loss, based on lighting manipulation in the GAN latent space. Fi-
nally, we present Toonify3D, a fully automated framework based on
StyleNormal, that can generate full-head 3D stylized avatars and
support GAN-based 3D facial expression editing.

CCS CONCEPTS
• Computing methodologies→ Mesh models.
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1 INTRODUCTION
Recent advances in GANs enable high-quality facial image styl-
ization. Toonify [Pinkney and Adler 2020] is one of the popular
approaches for facial stylization based on StyleGAN [Karras et al.
2019]. Toonify generates stylized faces with large and plausible
shape exaggerations, but such interesting shapes are only repre-
sented as 2D color images. Our goal is to turn Toonify into a 3D
stylized face generator by synthesizing 3D shapes that faithfully
depict the characteristics of Toonify results.

Synthesizing 3D shapes from stylized facial images is challeng-
ing; the reconstruction is ill-posed and data-driven reconstruction
is non-trivial due to the difficulty in obtaining ground-truth 3D
stylized faces. Previous work often relies on skilled 3D artists to per-
ceptually imitate the shapes of stylized faces. For example, Qiu et al.
[2021] built a 3D caricature dataset by asking 3D artists to sculpt
mesh models that correspond to 2D caricatures. However, manual
construction of such dataset is not scalable.

Recent studies on 3D-lifting GANs and 3D-aware GANs pro-
vide a fully self-supervised approach for obtaining 3D shapes from
GAN-generated images. However, the main objectives for these
self-supervisions are 3D-consistent image synthesis, not exactly
3D reconstruction. Then, the self-supervision applied to regular
faces [Chan et al. 2022, 2021; Gu et al. 2021; Pan et al. 2020, 2021;
Shi et al. 2021] and stylized faces [Abdal et al. 2023; Jin et al. 2022;
Wang et al. 2022] may produce smoothed-out or noisy 3D shapes
around facial components (see Sec. 5.1 for visual comparison).

In this work, we propose a novel 3D-lifting framework for Toonify
to produce 3D stylized faces without ground-truth 3D models or
3D-aware self-supervision. Our key idea is to construct 3D shapes
for stylized faces by leveraging prior knowledge on regular face
geometries. We define cross-domain StyleGAN features shared by
regular and stylized faces, and learn a predictor that maps the cross-
domain features to known local 3D geometries of regular faces. The
predictor then naturally extends to stylized faces, enabling local
3D geometries to be borrowed from regular faces for stylized facial
components.

Previous work [Pakhomov et al. 2021] shows that StyleGAN fea-
tures effectively convey semantic information in a single domain.
Taking a step further, we observe that such characteristics of Style-
GAN features can be generalized to stylized domain like Toonify.
Toonify is fine-tuned using only a few hundred gradient descent
steps starting from a StyleGAN for regular faces. Such weak fine-
tuning introduces shape deformation, but not so much deviation in
local StyleGAN features (Sec. 3).

Based on this observation, we propose a novel 3D-lifting method,
dubbed StyleNormal, which learns a mapping from pixel-wise Style-
GAN feature vectors to pixel-wise 3D surface normal vectors using
a multi-layer perceptron. Thanks to the cross-domain compatibility
of StyleGAN features, once trained on regular faces, our StyleNor-
mal can estimate surface normal maps for stylized faces without
requiring additional steps to bridge the domain gap. In the training
of StyleNormal, we utilize 3D scanned face models to render photo-
realistic images and their corresponding surface normal maps.

In the spirit of photometric stereo, we develop a novel regular-
ization term, normal consistency loss, which analyzes multiple facial
images under various lighting conditions. Using StyleGAN image
editing, this term maintains consistent underlying geometry under
illumination variation and improves surface normal estimation.

Building upon StyleNormal, we present Toonify3D, a fully auto-
mated framework that converts Toonify images into 3D full-head
meshes with a shared topology. Given a surface normal map from
StyleNormal, partial 3D surfaces on the facial region are recon-
structed by normal integration. We then perform non-rigid regis-
tration of a full-head template mesh to the partial 3D surfaces. The
registration enables the resulting 3D shapes from our framework
to share a common mesh topology. Using the full-head registra-
tion results, we demonstrate automatic construction of 3D facial
expressions for 3D stylized avatars using StyleGAN latent space
editing.

In summary, our technical contributions are as follows:

• We show StyleGAN features can serve as cross-domain fea-
ture descriptor between regular and stylized faces that are
useful for predicting local facial geometry.

• We propose StyleNormal that can estimate surface normals
for stylized faces by leveraging the surface normals of regular
faces with the cross-domain StyleGAN feature descriptor.

• We present how to build a synthetic dataset for StyleNormal
training and design a normal consistency loss that improves
surface normal estimation under various lighting conditions.

• Our Toonify3D framework can generate numerous 3D styl-
ized full-head mesh avatars based on Toonify results, sup-
porting GAN-based 3D facial expression editing.

2 RELATEDWORK
Single-view 3D face reconstruction. Estimating a 3D facial shape

from a single-view image is a highly ill-posed problem. A traditional
approach to solve the ill-posedness is to construct a parametric 3D
face model with known parameter distribution [Blanz and Vetter
1999; Li et al. 2017; Paysan et al. 2009]. Parametric 3D face models
with a prior distributions have been used in various 3D face recon-
struction frameworks [Deng et al. 2019; Garrido et al. 2016; Tewari
et al. 2017].

However, such models for regular faces do not generalize well to
stylized faces, such as cartoon or caricatures. Previous approaches
construct separate parametric models for stylized faces by building
3D mesh examples for exaggerated faces. Qui et al. [2021] build a
3D caricature dataset by manually sculpting approximately 2,000
3D meshes to mimic the shapes of 2D caricatures. Jung et al. [2022]
build a neural parametric model for 3D caricatures using the 3D
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caricature dataset. Still, constructing a dataset of stylized 3D shapes
is laborious and not scalable.

Han et al. [2017] build a PCAmodel for a cartoon by exaggerating
regular 3D faces via scaling of surface gradients. However, rule-
based exaggeration of regular faces does not guarantee the results
represent the target styles well. In our work, we build a 3D face
tailored for the target style by building a surface via normal map
estimation based on StyleGAN features.

StyleGAN and its features. StyleGAN [Karras et al. 2019, 2020] has
been widely used for generating and manipulating photo-realistic
facial images. Recent works also demonstrate that the model can
be effectively used in the cartoon domain via transfer learning [Gal
et al. 2022; Jang et al. 2021; Ojha et al. 2021; Pinkney and Adler 2020;
Wang et al. 2022; Yang et al. 2022]. Especially, Toonify [Pinkney and
Adler 2020] trains a cartoon image generator by fine-tuning a photo
generator with cartoon images. Toonify achieves the blending of
photo textures and cartoon structures by mixing StyleGAN features
of the two generators.

Recent works [Kim et al. 2022; Nitzan et al. 2022; Pakhomov
et al. 2021; Xu et al. 2021; Zhang et al. 2021] leverage StyleGAN fea-
tures for vision tasks in a single domain, e.g., facial photos. Notably,
Segmentation in Style [Pakhomov et al. 2021] and DatasetGAN
[Zhang et al. 2021] highlight generalization capabilities of Style-
GAN features for the semantic segmentation task in a single domain.
Segmentation in Style performs zero-shot semantic segmentation
on StyleGAN-generated images by clustering StyleGAN features.
DatasetGAN designs a few-shot training scheme for semantic seg-
mentation on StyleGAN-generated images using StyleGAN features
as the input for the segmentation network, requiring only a few
human annotations.

Polymorphic-GAN [Kim et al. 2022] shows zero-shot segmenta-
tion transfer across multiple domains, e.g., facial photos and draw-
ings. Its key idea is to train image generators for other domains
using a special architecture that preserves the feature distribution of
the original photo model, where the generators are trained by spa-
tially warping StyleGAN feature maps. In our work, we show that
establishing semantic correspondence between parent (original)
and child (fine-tuned) StyleGAN models does not require training
a specialized GAN architecture (Sec. 3). Recently, StyleAlign [Wu
et al. 2022] demonstrated cross-domain latent space alignment be-
tween parent and child StyleGAN models. Extending this approach,
we demonstrate cross-domain feature space alignment of parent
and child StyleGAN layers.

Based on cross-domain feature correspondences, we propose
StyleNormal that regresses surface normal maps for both regular
faces from StyleGAN and stylized faces from Toonify using pixel-
wise StyleGAN feature vectors. To our knowledge, our work is the
first to utilize cross-domain StyleGAN features for 3D-lifting.

3D geometry acquisition from GANs. 3D shapes can be retrieved
from GANs by constructing a 3D-aware image formation model and
training the model using the GAN. GAN2Shape [Pan et al. 2020]
and LiftedGAN [Shi et al. 2021] learn to generate 3D surfaces from
regular GANs using self-supervision that exploits the GAN latent
space. Wang et al. [2022] build a 3D cartoon generator based on
GAN2Shape.

3D-aware face generators based on neural volume rendering
[Chan et al. 2022, 2021; Gu et al. 2021; Pan et al. 2021] enable
self-supervised training of volumetric 3D face generator from 2D
training images. Once trained, the models can generate a volumetric
3D representation for 3D-consistent image synthesis, and a 3D
surface can be extracted from the volumetric 3D representation.
Recent works on 3D-aware GANs showcase 3D-aware synthesis of
stylized faces [Abdal et al. 2023; Jin et al. 2022].

These self-supervised methods for learning stylized 3D genera-
tors are advantageous in the sense that they do not require ground-
truth geometry. However, relying only on self-supervision may
require large-scale stylized face dataset with exact camera extrin-
sic and intrinsic parameters to produce accurate facial geometries.
Instead, we train our StyleNormal using a small number (≤ 10) of
examples of ground-truth geometry defined on regular face domain.
Borrowing the local geometry of high-quality ground-truth 3D reg-
ular faces, our framework constructs plausible surfaces for stylized
faces.

3 CROSS-DOMAIN STYLEGAN FEATURES
3.1 Cross-domain features of regular and

stylized faces
When people observe a stylized facial portrait, they would easily
deduce the underlying geometric structure of the face with hardly
any effort; while overall proportions of the facial components could
be heavily changed, people would be able to associate local regions
in the stylized portrait with the real-world counterparts. For ex-
ample, even if the eyes in the stylized portrait have significantly
large size compared to real-world eyes, people can recognize the
position, size, and visual characteristics of the eyelids, establishing
perceptual correspondence between stylized and realistic eyes.

This observation implies 3D surface for a stylized facial por-
trait can be constructed by leveraging prior knowledge on regular
face geometries. In other words, the same prior on the mapping
from local visual appearance to 3D local geometry could be shared
among regular and stylized faces, although the arrangements of
local geometries can change depending on overall proportions of
facial components.

Our key insight is to exploit this observation for constructing 3D
surfaces of regular and stylized faces by defining a shared mapping
from StyleGAN features to 3D local geometry. In image synthesis,
StyleGAN features determine appearances and arrangements of
facial components. Furthermore, each StyleGAN layer engages in
mutually independent synthesis (e.g., style-mix in [Karras et al.
2019]), and their role is maintained even after being fine-tuned for
another domain, as shown in layer-swapping in [Pinkney and Adler
2020]. Thus, we can hypothesize that features from each StyleGAN
layer have common characteristics regardless of the domain.

Based on this hypothesis, we define pixel-wise StyleGAN feature
vectors from the StyleGAN feature map pyramid F𝑝𝑦𝑟 = {𝐹1, 𝐹2,
..., 𝐹18}, where each layer corresponds to the index for the first
dimension of the𝑊 + space latent code w ∈ R18×512. To obtain a
pixel-wise feature vector at a given pixel position, we resize each
feature map in the pyramid to the output image size using bi-linear
interpolation. We then concatenate and normalize features at the
pixel position across all layers. Please refer to the supplementary
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document for details on the normalization. In the next section, we
show the pixel-wise StyleGAN feature vector is associated with
visual appearance, semantic, and 3D geometry of each local region
in a consistent way among regular and stylized faces.

3.2 Validation on cross-domain StyleGAN
features

To verify the cross-domain compatibility of pixel-wise StyleGAN
feature vectors, we perform a nearest neighbor search: for each pixel
in the target stylized face image, we associate the pixel with the
closest feature distance in the regular face image. Using the nearest
neighbor field, we warp the regular face image and its semantic
and normal maps, and show the warping results provide plausible
constructions of visual, semantic, and geometric information of the
stylized face image.

Given feature vectors v𝑟 and v𝑠 of regular and stylized faces,
respectively, we warp the color image c𝑟 of the regular face using
the nearest neighbor search;

c𝑠 (u) = c𝑟

(
argmin

u′
∥v𝑟 (u′) − v𝑠 (u)∥22

)
, (1)

where u and u′ are pixel positions in the stylized and regular face
images, respectively. Then, the resulting image c𝑠 (Fig. 2f bottom)
looks very similar to the original color image of the stylized face
(Fig. 2b). Warping for segmentation map s𝑟 and normal map n𝑟 of
the regular face can be performed in a similar way. There are no
original segmentation and normal maps to compare in this case,
but Fig. 2 shows plausible segmentation and normal maps can be
obtained for the stylized face. Fig. 2 also shows warping results
using other possible pixel-wise features, such as RGB patch and
VGG features [Simonyan and Zisserman 2015], and verifies that
our StyleGAN feature vector outperforms them in terms of cross-
domain compatibility between regular and stylized faces.

This experimental result has two major implications. First, the
StyleGAN features from two different StyleGAN models are com-
patible if the model is moderately fine-tuned as in Toonify. Second,
the StyleGAN features encode local geometric information based on
their rich semantic understanding. For instance, the segmentation
map from StyleGAN features shows that all stylized facial geome-
tries come from their respective facial components in the regular
face. In addition, notably, the normal map obtained by warping for
the stylized face shows convincing geometry for the exaggerated
facial components in Fig. 2.

4 NORMAL-BASED 3D LIFTING FOR
STYLEGAN

In this section, we propose a novel 3D-lifting method for StyleGAN,
which we call StyleNormal, that achieves versatile 3D-lifting for
both regular faces from StyleGAN and stylized faces from Toonify.
Our StyleNormal is a small neural network designed as a 3D-lifting
add-on for StyleGAN2 [Karras et al. 2020] and learns the mapping
from a pixel-wise StyleGAN feature vector defined in Sec. 3 to a
surface normal vector. Contrary to other alternatives such as depth,
which represent a shape in 3D global coordinates, surface normal
only specifies 3D local geometry that can be directly associated with

(a) Regular face (b) Stylized face (c) Segment map s𝑟 (d) Normal map n𝑟
image for v𝑟 image for v𝑠 for regular face for regular face

RGB patch
(7 × 7)

VGG features
(relu3_1/4_1/5_1)

StyleGAN features

(e) Search space (f) c𝑠 (u) = c𝑟 (u′ ) (g) s𝑠 (u) = s𝑟 (u′ ) (h) n𝑠 (u) = n𝑟 (u′ )

Figure 2: Results of nearest-neighbor search in the StyleGAN
feature space. We re-arrange colors, segmentation labels, and
surface normals from a regular face by performing nearest-
neighbor search with pixel-wise StyleGAN feature vector.
Due to the cross-domain compatibility of the feature vector,
simple greedy assignment based on feature distance produces
plausible warping results for visual appearance, segmenta-
tion map, and 3D normal map of the stylized face. Inputs:
©3DScanStore

local visual appearance encoded in StyleGAN features, as demon-
strated in Fig. 2. We train StyleNormal using regular faces only,
but thanks to the cross-domain compatibility of StyleGAN features
discussed in Sec. 3, the trained StyleNormal can be readily applied
to stylized faces. Leveraging the 3D-lifting result of StyleNormal,
our Toonify3D framework can generate 3D full-head meshes with a
shared mesh topology useful for real-world applications.

4.1 Synthetic dataset for StyleNormal
To train StyleNormal, which transforms a pixel-wise StyleGAN
feature vector v ∈ R6080 to its corresponding surface normal vector
n ∈ R3, we require a dataset comprising of paired (v,n) sam-
ples. We build this dataset using 3D scanned human data from
3DScanStore [3DScanStore 2023] under natural environmental light
conditions. We render color and normal images of ten 3D scanned
humans using Blender [Blender 2023], under six distinct environ-
mental lighting conditions, resulting in total 60 colored images and
10 surface normal maps. During training, we ignore pixels where
surface normal maps have not been rendered.

Since the input of StyleNormal is a pixel-wise StyleGAN feature
vector v, we extract StyleGAN features from the color images in
the dataset using GAN inversion [Richardson et al. 2021; Roich et al.
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StyleNormal

𝑓𝑁

StyleGAN
feature map

pyramids

StyleGAN2
𝐺(∙)

StyleFlow
Bi-linear interp.

sampling

Image coordinates

Synthetic
dataset

Bi-linear interp.
sampling

Bi-linear interp.
sampling

two random 
light conditions

𝑤𝑝, 𝜃𝑝

𝑤2

𝑤1

𝐺(𝑤𝑝; 𝜃𝑝) 𝐺(𝑤1) 𝐺(𝑤2)

Image examples

𝑧0

Pixel-wise
feature vectors

Surface
normals

𝓛𝒏𝒐𝒓𝒎𝒂𝒍 𝓛𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒕

Data flow for 𝓛𝒏𝒐𝒓𝒎𝒂𝒍

Data flow for 𝓛𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒕

Figure 3: Overview of StyleNormal training. At each iteration, we sample one pair of latent code𝑤𝑝 and network parameters 𝜃𝑝
obtained from GAN inversion on a synthetic image in our dataset. A pixel-wise feature vector extracted from the pair is fed
to StyleNormal to calculate L𝑛𝑜𝑟𝑚𝑎𝑙 . For regularization, we sample two additional pixel-wise feature vectors from StyleGAN
by sampling a random latent code 𝑧0 from Gaussian distribution and applying latent-space editing for two random lighting
conditions. The two feature vectors are used to calculate L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 .

Figure 4: Examples of our synthetic dataset constructed with
3DScanStore data [3DScanStore 2023]. Rendered RGB images
(top row), GAN projection via PTI [Roich et al. 2022] (middle),
and rendered surface normals (bottom). Note that the facial
geometries are almost unchanged after GAN inversion. Inputs:
©3DScanStore

2022; Tov et al. 2021; Zhu et al. 2020]. In this process, we employ
pivotal tuning GAN inversion [Roich et al. 2022], a technique that
achieves accurate reconstruction of the input image while enforc-
ing editable GAN latent space (Fig. 4). After performing the GAN
inversion, we construct pixel-wise StyleGAN feature vectors as
decribed in Sec. 3. As the pivotal tuning faithfully maintains the
input appearance and in-domain properties, we can align pixel-wise
StyleGAN features with the rendered surface normal maps.

4.2 Training StyleNormal
Our StyleNormal is a neural network that infers a surface normal
map for the facial region in a StyleGAN-generated image. It is

constructed as a four-layer multi-layer perceptron (MLP) regressor
𝑓𝑁 . The overall training process is illustrated in Fig. 3.

In training phase, we randomly sample image coordinates u in-
side the head region of the rendered surface normal map. StyleNor-
mal 𝑓𝑁 is updated using the following loss function:

L𝑛𝑜𝑟𝑚𝑎𝑙 = E(v,n)∼𝑝𝑑𝑎𝑡𝑎 [∥ 𝑓𝑁 (v(u)) − n(u)∥1], (2)

where v(u) and n(u) are pixel-wise StyleGAN feature vector and
ground-truth surface normal vector sampled at image coordinates
u, respectively.

To effectively estimate surface normal maps under diverse light-
ing conditions, it is advantageous to learn surface normal estimation
for a range of lighting scenarios. To facilitate this, we propose a
normal consistency loss. Inspired by photometric stereo, which ana-
lyzes multiple images of an object under varying illumination, we
constrain our StyleNormal to estimate a consistent surface normal
map for a single face when the light direction changes. To synthe-
size diverse illuminations, we adopt StyleFlow [Abdal et al. 2021], a
recent attribute-conditioned latent space exploration method, that
supports illumination editing while preserving the underlying ge-
ometry. This regularization ensures that StyleNormal is exposed
to multiple illumination conditions for a single unseen geometry,
thereby enhancing its generalization capability.

In the preprocessing step, we randomly sample a set of latent
codes z0 from Gaussian distribution. For each sampled latent code,
we obtain five illumination-edited latent codesw by applying Style-
Flow with five distinct illumination direction presets; front, left,
right, above, and below. Using these latent codes w, we generate
five StyleGAN feature map pyramids (𝐺 (w) in Fig. 3) that introduce
lighting variations in StyleGAN feature vectors used for training.

During each training iteration, we randomly select two light-
adjusted StyleGAN feature map pyramids 𝐺 (𝑤1) and 𝐺 (𝑤2), and
then sample pixel-wise feature vectors v1 and v2 from 𝐺 (𝑤1) and
𝐺 (𝑤2) at the same image coordinates u′, respectively. Our normal
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(a) Input (b) Toonify (c) Frontalization (d) Landmark detection (e) Surface normal (f) Normal integration
[Pinkney and Adler 2020] (Sec. 4)

(g) Non-rigid template + texture - wireframe (h) Side view of (g)
mesh registration

Figure 5: Overall process for our full-head 3D stylized face generation.
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Figure 6: Results of StyleNormal fromToonify outputs of var-
ious styles. Without requiring additional training, StyleNor-
mal generates plausible 3D normals for multiple domains.

consistency loss is then formulated as

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = E[∥ 𝑓𝑁 (v1 (u′)) − 𝑓𝑁 (v2 (u′))∥1], (3)

which enforces the estimated normals 𝑓𝑁 (v1) and 𝑓𝑁 (v2) to be the
same, as they should represent the same underlying local geometry
independently from adjusted lighting.

To summarize, the full objective function for training StyleNor-
mal 𝑓𝑁 is as follows:

L𝑓𝑁 = L𝑛𝑜𝑟𝑚𝑎𝑙 + 𝜆𝑟𝑒𝑔L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 , (4)

where 𝜆𝑟𝑒𝑔 is a hyper-parameter for normal consistency loss.
Once StyleNormal has been trained, it can be applied to a variety

of Toonify models, each trained with different stylized face datasets,
without requiring any additional training (Fig. 6).

4.3 Full-head 3D Stylized Face Generation
By applying StyleNormal to a Toonify result, we can obtain a surface
normal map that describes the 3D surface geometry of a stylized
face. However, surface normal maps alone have limited applications.
We therefore design a fully automated framework, Toonify3D, to
obtain full-head mesh models from Toonify results. Fig. 5 illustrates
the overall process for generating a full-head 3D stylized mesh
model.

We first transform the pose of the input image into a frontal
pose using latent space editing [Shen et al. 2020]. We then extract a
surface normal map using our StyleNormal and convert the surface
normal map into a depth map by performing normal integration
[Hertzmann and Seitz 2005] on the facial region. We also detect
facial landmarks using [Jin et al. 2021] and then non-rigidly fit a
full-head template mesh to the partial surface with facial landmarks
using [Amberg et al. 2007]. Implementation details are discussed in
the supplementary document.

5 EXPERIMENTS
Our Toonify3D framework1generates a 3D full-head stylized avatar
by taking a real-world photo or a Toonify-generated image as the
input (Figs. 11 and 15). The resulting avatar can be used in real-
world applications by attaching diverse 3D assets depending on
user preferences (Fig. 14).

Running time. The entire process of Toonify3D takes about 3
minutes using Intel XeonGold 6226R CPU andNVIDIAQuadro RTX
8000 GPU. StyleNormal inference and surface normal integration
take 1.2 miliseconds and 15 seconds, respectively. The rest of the
time is spent on pre-processing, post-processing, and non-rigid
registration.

5.1 Qualitative comparison
We conduct a qualitative evaluation of our results compared to
state-of-the-art methods for 3D-aware GANs, from which a 3D
1Our code is available at https://github.com/wonjongg/Toonify3D

https://github.com/wonjongg/Toonify3D
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(a) LiftedGAN (b) Ours (c) EG3D (d) Ours
[Shi et al. 2021] [Chan et al. 2022]

Figure 7: Qualitative comparison to state-of-the-art methods
for 3D-lifting GAN [Shi et al. 2021] and 3D-aware GAN [Chan
et al. 2022] for regular face domain. The images (a) and (c)
are taken from figures of respective works. For side-by-side
comparison of geometry quality, we apply GAN-inversion to
the regular face images and visualize our results as shading
images. Our surface shows cleaner geometry for facial com-
ponents.

surface can be extracted. For further qualitative comparisons with
3D reconstruction methods and a 3D diffusion model, please refer
to the supplementary document.

For regular faces, we compare the visual quality of 3D surfaces
extracted by our method with that of LiftedGAN [Shi et al. 2021]
and EG3D [Chan et al. 2022] (Fig. 7). LiftedGAN performs unsuper-
vised 3D-lifting for 2D GANs, and EG3D is a GAN for a volumetric
radiance field. To facilitate side-by-side comparison, we first per-
form GAN inversion [Roich et al. 2022] to obtain StyleGAN features
of input images and then apply our StyleNormal to these extracted
features.

We also visually compare 3D surfaces for stylized faces in Fig. 10,
which includes diverse state-of-the-art 3D-aware GANs capable
of yielding 3D surfaces. For EG3D [Chan et al. 2022] and Dr.3D
[Jin et al. 2022], we fine-tune each model with cartoon images and
then use GAN inversion on input images to obtain 3D geometries.
Further details on fine-tuning and the GAN inversion are available
in the supplementary document. For E3DGE [Lan et al. 2023] and
3DAvatarGAN [Abdal et al. 2023], both of which consider cartoon
face domain, we use examples provided in their works for direct
comparison.

The 3D surfaces from previous 3D-aware GANs tend to pro-
duce rough geometries based on estimated depths or volumetric
representations. Although these rough shapes from previous meth-
ods are suitable for 3D-consistent image synthesis, their utility in
creating 3D mesh models for avatars is limited, particularly due
to the lack of fine shape features, such as those around eyes and
nose. In contrast, our method produces clear facial surfaces that
enable more accurate facial identity recognition based on geometry.
As a result, these surfaces are better suited for visually pleasing
non-rigid template mesh registration.

5.2 Quantitative comparison
To ensure reliable surface normal map generation for Toonify re-
sults, it is crucial to verify that StyleNormal is accurately trained to

estimate correct surface normal maps for regular faces. We evaluate
the accuracy of StyleNormal for regular faces in Table 1. The errors
in estimated surface normals for regular faces are measured using
our test set, which comprises 60 rendered facial images and the
corresponding surface normal maps obtained using ten 3D scanned
faces [3DScanStore 2023] under six different illuminations.

Compared to existing frameworks that require large-scale train-
ing data, such as pix2vertex [Sela et al. 2017], SfSNet [Sengupta
et al. 2018], and cross-modal network [Abrevaya et al. 2020], our
StyleNormal achieves more accurate surface normal estimation
with a limited set of training data. StyleNormal leverages StyleGAN
features, which contain rich semantic and geometric information,
thus effectively addressing the ill-posedness of normal estimation.

5.3 Ablation study
Effect ofL𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 . Wefirst evaluate the effect of the loss on the

accuracy of the estimated normal maps for regular faces (Table 2).
We report estimation errors compared to ground-truth normalmaps,
using the test set of our 3D scanned human face dataset. Inclusion
ofL𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 decreases the error by regularizing StyleNormal with
various lighting conditions.

We then evaluate the effect of this loss on the robustness of esti-
mated 3D stylized normal maps against light variations in Toonify
results. We create a hundred cartoon images using Toonify and ap-
ply five different light manipulations using StyleFlow [Abdal et al.
2021]. We then report the mean angular errors between the five
estimated surface normal maps and their average. The L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

loss that enforces insensitivity to lighting variations in regular faces
consequently makes StyleNormal robust against diverse stylized
lighting conditions in Toonify results. Fig. 13 visualizes the effect
of L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 on StyleNormal results, where 3D facial geometries
are more faithfully recovered regardless of stylized lighting effects.

Training data size. In Table 3, we explore the effect of training
data size on the accuracy of surface normal estimation. Our results
show that increasing the number of identities used for training from
1 to 10 leads to a decrease in error. However, the performance gain
is marginal and tends to converge. Since our StyleNormal is trained
in a pixel-wise manner and a single image contains about 300,000
pixels in the facial region, we can effectively train StyleNormal with
large amount of pixel-wise paired data even with a small number
of face images.

Please refer to the supplementary document for additional abla-
tion studies on number of layers and input feature layer selection.

5.4 Generalization to diverse styles
We verify the generalization power of our StyleNormal to diverse
stylized faces. To synthesize images for diverse domains, we adapt
StyleGAN-NADA [Gal et al. 2022], which presents text-driven do-
main adaptation of styleGAN by leveraging the semantic power of
large-scale Contrastive-Language-Image-Pre-training (CLIP) [Rad-
ford et al. 2021]model.We extract StyleGAN features from StyleGAN-
NADA models and then estimate surface normal maps using our
StyleNormal. In Fig. 8, we observe that our StyleNormal can success-
fully estimate surface normal maps from diverse face stylization.
Please refer to the supplementary document for more results.
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Figure 8: Results of StyleNormal on various styles from
StyleGAN-NADA. We annotate the style name above each
result. For each style, three images are presented: (top) input
image, (middle) StyleNormal result, and (bottom) shading of
StyleNormal result for visualization.

5.5 Application to GAN-based 3D shape editing
We introduced an automated pipeline that facilitates transformation
of Toonify’s 2D outputs into 3D full-head stylized faces. Using this
pipeline as the bridge between 2D GANs and 3D meshes, we can
also achieve 3D shape editing based on semantic manipulation in
GAN latent space. Fig. 12 demonstrates 3D facial expression editing
based on 2D expression editing with InterFaceGAN [Shen et al.
2020]. Such 3D modeling based on rich 2D appearance model could
open up a wide set of tool-kits for authoring stylized 3D faces.

5.6 Limitations
Toonify bias. Our framework relies on a Toonify-based backbone

for face stylization. Toonify is trained using a limited number of
cartoon characters, thus suffering with the model bias toward cer-
tain character styles. We expect that this limited diversity can be
resolved by training Toonify with larger cartoon dataset or applying
various text-conditioned styles from StyleGAN-NADA.

Subjects with eyeglasses. Our acquisition of depth maps from
estimated normal maps assumes that the facial region is continuous.
In case where Toonify results include eyeglasses, the presence of
eyeglasses introduces discontinuities in the surface normal maps,
particularly around the frames and lenses. StyleNormal results on
subjects wearing eyeglasses are shown in Fig. 9.

6 CONCLUSION
In this work, we presented Toonify3D, a novel 3D full-head stylized
face generation framework based on Toonify. We experimentally
demonstrated the compatibility of Toonify features with original
StyleGAN features. Our method, which adapts the local 3D geome-
try of regular faces to stylized faces based on cross-domain feature
compatibility, conceptually aligns with the perception of 3D ge-
ometry in stylized faces. Building on this concept, we developed

Figure 9: Limitations. If the input subject wears eyeglasses,
strong discontinuity in normal values near the glasses may
hinder reliable surface normal integration.

Table 1: Quantitative evaluation of normal estimation for
regular faces on our test set comprising 3D scanned data
[3DScanStore 2023]. Reported mean angular errors are the
average of angles between the estimated and GT 3D nor-
mals in degrees. Percentages of pixels within different error
thresholds are reported on the right.

Method (Dataset volume) Mean±std < 20◦ < 25◦ < 30◦

pix2vertex [2017] 34.51±2.25 54.0% 66.1% 72.2%
(large-scale)
SfSNet [2018] 17.32±1.60 70.0% 78.1% 83.8%
(large-scale)
cross-modal [2020] 16.66±1.46 73.4% 84.0% 90.1%
(large-scale)

Ours (few-shot) 9.57±1.26 91.8% 95.1% 96.9%

Table 2: Ablation study on normal consistency loss. The error
metric is the same as in Table 1.

Evaluation w/o L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 full

Accuracy for regular face normal 9.85±1.41 9.57±1.26
Robustness under light variation 3.18±0.79 1.85±0.61

Table 3: Ablation study on the number of identities (𝑁 ) used
for training. As mentioned in Sec. 4.1, we used six rendered
images per identity for training. The error metric is the same
as in Table 1.

Number of identities Mean±std < 10◦ < 15◦ < 20◦
𝑁 = 1 (6 shots) 10.52±0.88 60.0% 81.3% 90.2%
𝑁 = 3 (18 shots) 9.63±1.37 66.3% 84.6% 91.8%
𝑁 = 5 (30 shots) 9.59±1.46 66.7% 84.3% 91.7%
𝑁 = 10 (60 shots) 9.57±1.26 67.3% 84.7% 91.8%

StyleNormal, a 3D-lifting add-on for both StyleGAN and Toonify.
Using StyleNormal as the bridge between a 2D generative model
and 3D modeling, creative 3D face authoring toolkits could be built
upon rich 2D GAN latent spaces.
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Figure 10: Qualitative comparison to state-of-the-art 3D-aware GANs applied to stylized face domain. We fine-tuned EG3D
[Chan et al. 2022] and Dr.3D [Jin et al. 2022] on cartoon face dataset and performed GAN inversion to acquire facial geometries.
For E3DGE [Lan et al. 2023] and 3DAvatarGAN [Abdal et al. 2023] that already consider cartoon face domain, examples provided
in their works are used for comparison. 3D-aware GANs generally produce flat or blurred shapes while our results create clear
shapes for facial components.

Figure 11: Results on real-world photos. Input photos are
from SFHQ dataset [Beniaguev 2022].
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Figure 12: GAN-based 3D expression editing. By applying
latent-space semantic editing on a 2D image, we can ob-
tain the corresponding 3D shape with edited expression.

(a) Input (b) w/o L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (c) Full model

Figure 13: Effect of normal consistency loss on the 3D
shapes from Toonify results.

Figure 14: Using our 3D full-head results, users can attach
diverse 3D assets, such as hair and clothes, depending on
their preferences.
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Figure 15: Multi-view visualization of our results. More results can be found in our supplementary document.
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